|
|
@@ -1,44 +1,67 @@ |
|
|
|
import re |
|
|
|
|
|
|
|
|
|
|
|
text = open(0).read() |
|
|
|
p1, p2 = text.split('\n\n') |
|
|
|
|
|
|
|
grid = {} |
|
|
|
for y, row in enumerate(p1.splitlines()): |
|
|
|
for x, cell in enumerate(row): |
|
|
|
if cell.strip(): |
|
|
|
grid[complex(x, y)] = cell |
|
|
|
|
|
|
|
|
|
|
|
def render(grid): |
|
|
|
xmin, *_, xmax = sorted(int(p.real) for p in grid) |
|
|
|
ymin, *_, ymax = sorted(int(p.imag) for p in grid) |
|
|
|
for y in range(ymin, ymax + 1): |
|
|
|
for x in range(xmin, xmax + 1): |
|
|
|
res = int(size % 9) |
|
|
|
for y in range(ymin, ymax + 1, res): |
|
|
|
for x in range(xmin, xmax + 1, res): |
|
|
|
print(grid.get(complex(x, y), ' '), end='') |
|
|
|
print() |
|
|
|
|
|
|
|
|
|
|
|
pos = min(grid, key=lambda p: (p.real == 0, p.imag)) |
|
|
|
grid[pos] = '@' |
|
|
|
d = 1 |
|
|
|
for n, b in zip(map(int, re.sub(r'[A-Z]', ' ', p2).split()), re.sub(r'\d', ' ', p2).split()): |
|
|
|
for _ in range(n): |
|
|
|
if grid.get(pos + d) in set('.<v>^'): |
|
|
|
pos += d |
|
|
|
elif grid.get(pos + d) == '#': |
|
|
|
continue |
|
|
|
elif grid.get(pos + d) == None: |
|
|
|
lol = pos |
|
|
|
while grid.get(lol - d) != None: |
|
|
|
lol -= d |
|
|
|
if grid[lol] == '.': |
|
|
|
pos = lol |
|
|
|
else: |
|
|
|
continue |
|
|
|
d *= {'R': 1j, 'L': -1j}[b] |
|
|
|
|
|
|
|
|
|
|
|
render(grid) |
|
|
|
print(4 * int(pos.real + 1) + 1000 * int(pos.imag + 1) + {1: 0, -1j: 1, -1: 2, 1j: 3}[d]) |
|
|
|
def move_50_1(grid, pos, drx, size=50): |
|
|
|
pos += drx |
|
|
|
if grid.get(pos) is None: |
|
|
|
match pos.imag // size, pos.real // size, drx: |
|
|
|
case -1, 1, -1j: return pos + size * 3j, drx |
|
|
|
case -1, 2, -1j: return pos + size * 1j, drx |
|
|
|
case 0, 0, -1 : return pos + size * 2 , drx |
|
|
|
case 0, 3, 1 : return pos + size * -2 , drx |
|
|
|
case 1, 0, -1 : return pos + size * 1 , drx |
|
|
|
case 1, 0, -1j: return pos + size * 2j, drx |
|
|
|
case 1, 2, 1 : return pos + size * -1 , drx |
|
|
|
case 1, 2, 1j: return pos + size * -1j, drx |
|
|
|
case 2, -1, -1 : return pos + size * 2 , drx |
|
|
|
case 2, 2, 1 : return pos + size * -2 , drx |
|
|
|
case 3, -1, -1 : return pos + size * 1 , drx |
|
|
|
case 3, 1, 1 : return pos + size * -1 , drx |
|
|
|
case 3, 1, 1j: return pos + size * -3j, drx |
|
|
|
case 4, 0, 1j: return pos + size * -2j, drx |
|
|
|
case default: print('x', default) |
|
|
|
return pos, drx |
|
|
|
|
|
|
|
|
|
|
|
def solve(inst, grid, teleport): |
|
|
|
pos = min(grid, key=lambda p: (p.real == 0, p.imag)) |
|
|
|
drx = 1 |
|
|
|
grid = grid.copy() |
|
|
|
for step in re.findall(r'(R|L|\d+)', inst): |
|
|
|
if step.isdigit(): |
|
|
|
for _ in range(int(step)): |
|
|
|
grid[pos] = {1j: 'v', -1j: '^', -1: '<', 1: '>'}[drx] |
|
|
|
new, dr2 = teleport(grid, pos, drx) |
|
|
|
match grid[new]: |
|
|
|
case '#': |
|
|
|
break |
|
|
|
case _: |
|
|
|
pos, drx = new, dr2 |
|
|
|
else: |
|
|
|
drx *= {'R': 1j, 'L': -1j}[step] |
|
|
|
render(grid) |
|
|
|
return 4 * int(pos.real + 1) + 1000 * int(pos.imag + 1) + {1: 0, 1j: 1, -1: 2, -1j: 3}[drx] |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
global size |
|
|
|
text = open(0).read() |
|
|
|
src, inst = text.split('\n\n') |
|
|
|
grid = {complex(x, y): c for y, l in enumerate(src.splitlines()) |
|
|
|
for x, c in enumerate(l) if c in '.#'} |
|
|
|
size = (len(grid) // 6) ** 0.5 |
|
|
|
print(solve(inst, grid, eval(f'move_{int(size)}_1'))) |
|
|
|
# print(solve(inst, grid, eval(f'move_{int(size)}_2'))) |
|
|
|
|
|
|
|
|
|
|
|
main() |