| @@ -1,44 +1,67 @@ | |||
| import re | |||
| text = open(0).read() | |||
| p1, p2 = text.split('\n\n') | |||
| grid = {} | |||
| for y, row in enumerate(p1.splitlines()): | |||
| for x, cell in enumerate(row): | |||
| if cell.strip(): | |||
| grid[complex(x, y)] = cell | |||
| def render(grid): | |||
| xmin, *_, xmax = sorted(int(p.real) for p in grid) | |||
| ymin, *_, ymax = sorted(int(p.imag) for p in grid) | |||
| for y in range(ymin, ymax + 1): | |||
| for x in range(xmin, xmax + 1): | |||
| res = int(size % 9) | |||
| for y in range(ymin, ymax + 1, res): | |||
| for x in range(xmin, xmax + 1, res): | |||
| print(grid.get(complex(x, y), ' '), end='') | |||
| print() | |||
| pos = min(grid, key=lambda p: (p.real == 0, p.imag)) | |||
| grid[pos] = '@' | |||
| d = 1 | |||
| for n, b in zip(map(int, re.sub(r'[A-Z]', ' ', p2).split()), re.sub(r'\d', ' ', p2).split()): | |||
| for _ in range(n): | |||
| if grid.get(pos + d) in set('.<v>^'): | |||
| pos += d | |||
| elif grid.get(pos + d) == '#': | |||
| continue | |||
| elif grid.get(pos + d) == None: | |||
| lol = pos | |||
| while grid.get(lol - d) != None: | |||
| lol -= d | |||
| if grid[lol] == '.': | |||
| pos = lol | |||
| else: | |||
| continue | |||
| d *= {'R': 1j, 'L': -1j}[b] | |||
| render(grid) | |||
| print(4 * int(pos.real + 1) + 1000 * int(pos.imag + 1) + {1: 0, -1j: 1, -1: 2, 1j: 3}[d]) | |||
| def move_50_1(grid, pos, drx, size=50): | |||
| pos += drx | |||
| if grid.get(pos) is None: | |||
| match pos.imag // size, pos.real // size, drx: | |||
| case -1, 1, -1j: return pos + size * 3j, drx | |||
| case -1, 2, -1j: return pos + size * 1j, drx | |||
| case 0, 0, -1 : return pos + size * 2 , drx | |||
| case 0, 3, 1 : return pos + size * -2 , drx | |||
| case 1, 0, -1 : return pos + size * 1 , drx | |||
| case 1, 0, -1j: return pos + size * 2j, drx | |||
| case 1, 2, 1 : return pos + size * -1 , drx | |||
| case 1, 2, 1j: return pos + size * -1j, drx | |||
| case 2, -1, -1 : return pos + size * 2 , drx | |||
| case 2, 2, 1 : return pos + size * -2 , drx | |||
| case 3, -1, -1 : return pos + size * 1 , drx | |||
| case 3, 1, 1 : return pos + size * -1 , drx | |||
| case 3, 1, 1j: return pos + size * -3j, drx | |||
| case 4, 0, 1j: return pos + size * -2j, drx | |||
| case default: print('x', default) | |||
| return pos, drx | |||
| def solve(inst, grid, teleport): | |||
| pos = min(grid, key=lambda p: (p.real == 0, p.imag)) | |||
| drx = 1 | |||
| grid = grid.copy() | |||
| for step in re.findall(r'(R|L|\d+)', inst): | |||
| if step.isdigit(): | |||
| for _ in range(int(step)): | |||
| grid[pos] = {1j: 'v', -1j: '^', -1: '<', 1: '>'}[drx] | |||
| new, dr2 = teleport(grid, pos, drx) | |||
| match grid[new]: | |||
| case '#': | |||
| break | |||
| case _: | |||
| pos, drx = new, dr2 | |||
| else: | |||
| drx *= {'R': 1j, 'L': -1j}[step] | |||
| render(grid) | |||
| return 4 * int(pos.real + 1) + 1000 * int(pos.imag + 1) + {1: 0, 1j: 1, -1: 2, -1j: 3}[drx] | |||
| def main(): | |||
| global size | |||
| text = open(0).read() | |||
| src, inst = text.split('\n\n') | |||
| grid = {complex(x, y): c for y, l in enumerate(src.splitlines()) | |||
| for x, c in enumerate(l) if c in '.#'} | |||
| size = (len(grid) // 6) ** 0.5 | |||
| print(solve(inst, grid, eval(f'move_{int(size)}_1'))) | |||
| # print(solve(inst, grid, eval(f'move_{int(size)}_2'))) | |||
| main() | |||